The Cayley-Dickson Construction in Homotopy Type Theory

نویسندگان

  • Ulrik Buchholtz
  • Egbert Rijke
چکیده

We define in the setting of homotopy type theory an H-space structure on S3. Hence we obtain a description of the quaternionic Hopf fibration S3 ↪→ S7 S4, using only homotopy invariant tools.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Motivic Hopf elements and relations

We use Cayley–Dickson algebras to produce Hopf elements η, ν, and σ in the motivic stable homotopy groups of spheres, and we prove the relations ην = 0 and νσ = 0 by geometric arguments. Along the way we develop several basic facts about the motivic stable homotopy ring.

متن کامل

Automorphism groups of real Cayley-Dickson loops

The Cayley-Dickson loop Cn is the multiplicative closure of basic elements of the algebra constructed by n applications of the Cayley-Dickson doubling process (the first few examples of such algebras are real numbers, complex numbers, quaternions, octonions, sedenions). We will discuss properties of the Cayley-Dickson loops, show that these loops are Hamiltonian and describe the structure of th...

متن کامل

Functions of Several Cayley-dickson Variables and Manifolds over Them

Functions of several octonion variables are investigated and integral representation theorems for them are proved. With the help of them solutions of the˜∂-equations are studied. More generally functions of several Cayley-Dickson variables are considered. Integral formulas of the Martinelli-Bochner, Leray, Koppelman type used in complex analysis here are proved in the new generalized form for f...

متن کامل

Cayley-Dickson Construction

Cayley-Dickson construction produces a sequence of normed algebras over real numbers. Its consequent applications result in complex numbers , quaternions, octonions, etc. In this paper we formalize the construction and prove its basic properties. The notation and terminology used here have been introduced in the following We use the following convention: u, v, x, y, z, X, Y are sets and r, s ar...

متن کامل

Identities for Algebras Obtained from the Cayley-dickson Process

The Cayley-Dickson process gives a recursive method of constructing a nonassociative algebra of dimension 2 for all n 0, beginning with any ring of scalars. The algebras in this sequence are known to be flexible quadratic algebras; it follows that they are noncommutative Jordan algebras: they satisfy the flexible identity in degree 3 and the Jordan identity in degree 4. For the integral sedenio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1610.01134  شماره 

صفحات  -

تاریخ انتشار 2016